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C A L C U L A T I O N  O F  E L A S T O P L A S T I C  S T R A I N S  I N  A M U L T I -  

C O M P O N E N T  P O L Y C R Y S T A L L I N E  M A T E R I A L  

O. A. Volokhovskaya and V. V. Podalkov UDC 539.374 

Study of the laws governing the elastoplastic deformation of composite materials obtained on the basis of  several freely 

dispersed components continues to be of considerable interest in connection with their broadening use [1-3]. However, the 

methods presently available for studying the inelastic behavior of stochastic mixtures do not adequately account for the physical 
nature of plastic deformation in their components. 

In this investigation, we calculate the plastic strains in a stochastic composite and derive its macroscopic flow equation 
for an arbitrary loading program. We do this on the basis of a mechanism which includes multiple crystallographic slip in the 
components of  single crystals. A similar approach was used in [4] for a one-component polycrystal. A comparison of theoretical 
and experimental tension curves made for the example of a copper-tungsten composite showed that the theory and experiment 
agree satisfactorily. 

1. We will examine a polycrystalline composite medium consisting of N uniformly mixed, ideally bonded homogeneous 
and elastic isotropic components. Let q = 1 . . . . .  M represent the elastic components and q = M + 1 . . . . .  N represent the 
elastoplastic components. 

We will assume that the plastic strains in the grains (single crystals) of  the components of  the composite occur by 
translational crystallographic slip and begin at the moment when the shear stress in any slip system of a grain reaches a value 

ro (~ which is a constant for the given material. The components in which this condition is not yet satisfied for the specified 
load history remain elastic. Plastic shears reinforce both the active and the passive slip systems in the single crystal, which is 
expressed in an increase in the resolvent shear stress. 

Thus, the following relations should be satisfied for a plastic grain in the q-th (q = M + 1 . . . . .  N) component of the 
medium 

q oq  ~q  

1 [li(,,)Cq~n~,,~ca~ + lj n, (l, j 1, 2, 3). (1.1) 

Here, sij Cq) are the deviators of  the local stresses alj(~; eij (q) are the local plastic strains (eli (q) = 0); ~(,0, X,~ are the shear stress 
and plastic shear in the system ~ of the grain; tij"(q) is the Schmidt tensor, where 1 ('• n ('• are unit vectors for the slip 
direction and a normal to the slip plane of system ~. No summation is performed over the indices. 

We will assume that the reinforcement of  the slip systems of the single crystals in all of  the plastic components of the 

medium (q = M + I . . . . .  N) is isotropic and is described by the equation [5] 

nq 

~cq, : ~coq> + f H(q) ~ d).a (~ = 1 . . . . .  ~ ) ,  (1.2) 

where H (q) is the isotropic strain-hardening modulus; to(q) is the resolvent shear stress associated with the initial shear, this stress 
depending on the elastic properties of  the component and its microstructure [6, 7]; rq is the number of  active slip systems in 
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the given plastic grain of  the composite; Lq is the total number of slip systems in the crystal. It follows from Eq. (1.2) that the 
acting shear stresses are the same in all of the active systems of the single crystal. 

In accordance with [8], we assume that the plastic shears in the slip systems of the crystal will be equal in the case of 
multiple slip. Then introducing the integral shear A(q) = nqk (},,, = X, tx = 1 . . . . .  ha) and the Sclmaidt tensor tijtq), averaged 

over all active slip systems, we use (1.1) and (1.2) to obtain expressions for the increments of  the local stresses and swains (d m 
da) in terms of h(~: 

'OtCq)'~q)'o = H(q)A(q)' %'c,,~ = 2t~a)Acq) 

ti~q ) t ~, = - - V t i ;  (q) �9 
(1.3) 

Assuming that the swain-hardening of the components is regular [9], we assign their local swain-hardening moduli in 
the form 

I~(q) ")l,  +(q)~,(q) "~ z'lt'(q)~kl ~kl (1.4) 

(hq are physical constants of  the materials). 

It was shown in [4] that the choice of H (q) in the form (1.4) models features of  the regular swain-hardening of a material 
at the microstructural level. 

2. We describe the spatial structure of the composite medium by means of random indicator functions of  the coordinates 

Xq(r) (q = 1 . . . . .  N), taking a value of 1 for the set of points of the q-th component and 0 outside this set. Also, let Cq be the 
volume concentrations of  the components. Using these functions, we can express Hooke's law (which is valid at the points of 
the component) in the form 

s,j ( r )  = 2~ (r)  [e,, ( r )  - ~,j ( r )  ], 

o. (r) = 3K (r) E. (r), 

e o(r) xq(r) = 0 ( q =  1 . . . . .  N D ,  
N N 

. (0 = Y..~• (~), r (r) = y_ G• (r), 
q : l  q=l 

(2.1) 

where Eii(r ) and eli(r) is the tensor of the total local strains of the medium and its deviator; Kq and #q are the elastic moduli of 
the components of  the composite (q = 1 . . . . .  N). 

We now assume that all of the random fields being examined 

& (r) (e,i (r)), % (r) (s~i (r)), ~,~ (r) and xq (r) 

(q = 1 . . . . .  N) are statistically uniform and ergodic. Then their mathematical expectations can be replaced by quantities averaged 

over the volumes of the components Vq and the composite V. The corresponding averaging operations will be designated by 
the symbols ( )q and ( ) .  

Equilibrium equations ~aij(r ) = 0 (~ is the operator for differentiation with respect to the j-th coordinate) must also 
be satisfied at each point of  the medium. With allowance for these equations, we write Eqs. (2.1) in the Lam6 form and then 

use the Green's function of an equivalem infinite homogeneous medium to convert them to integral form. For simplicity limiting 

ourselves to the singular approximation hypothesis [10], we obtain local relations of  the form 

e 0 (r) = (el.i) + ct0 [@j (r) - (@~)], 

E,, (r) = (&) + ~oe (r). (2.2) 

Here 

N 

Q~ (r) = e 0 (r) - ~ m,~xq (r) le o (r) - g0 (r) ]; (2.3) 
q=l 
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N 

p (r) = E,, (r) - ~ ~ (r) • (r) E,, ( r) ;  

(Qo) = ~q = (sij) (2~,o) -l - (eq); 
2 ( 4  - 5",'o) . 1 + vo 3Ko  - 2P-O . 

So= 15(~-, ,o) '  [3o = 3(~- , ,o) '  v0= 3(~o+3Ko)' 

mq = btqP.O~; kq = KqKo~; 

are macroscopic plastic strains; ~o is the Poisson's ratio of the effective medium; P-o and I( o are its macroscopic elastic 
constants. Thus, 

(s,j) = 2/.to ((e~.i) - ~q), (o,,) = 3Ko (E~,). (2.4) 

We obtain the following from (2.1)-(2.3) for an arbitrary grain of the q-th component 

~,7 ) = (E,,) + ~o (1 - ~,,) ~,:,' ~q = l . . . . .  N ) ,  

r ( q =  1 . . . . .  M). 

(2.5) 

Solving (2.5) for eij (q) and Eli (q), we use (2.1) to obtain the local stresses 

= - -  - -  ~.q ] sl~ '~ 2~tom~ t'q,~ (1 ao) ~'~ 
(~Ir ~ - 0 ,  q = l  . . . . .  M), 

o~,~ = aKok~ ~ (e , , ) .  

(2.6) 

Here, 

,lq = (1 - So) (e,j) + ,~o (s,,) (2~o) -~, 
o o mq = rnq [ 1  + So ( m q  - -  1) ]-i,  kq = kq  [1  + ~ 0  (kq - 1) ]-1. (2.7) 

We further note that, in accordance with the chosen mechanism of plastic deformation, we can distinguish three different 
strain regions inside the q-th elastoplastic component of the composite. The fast (s = 1) is formed of grains that are completely 
plastic, i.e. grains for which the number of active slip systems nq -- pq < 5, where pq is the maximum possible number of 

independent systems for the material of the composite. The second region (s = 2) is composed of crystallites that are 
incompletely plastic and have nq < pq active slip systems. The third region (s = 3) comprises elastic grains, where plastic flow 
has not yet begun (nq = 0). Let Vql, Vq2, Vq3 (Vql + Vq2 + vq3 -- 1) be the volume concentrations of these single crystals in the 
q-th component of the mixture, and let xq~(r) (s = 1, 2, 3) be random indicator functions of the corresponding strain regions 
inside Vq (q = M + 1 . . . . .  N). It is evident that Xql(r ) + xq2(r) + Xqa(r) = xq(r) [xq(r) will be the indicator function of the 

q-th elastoplastic component of  the composite]. 
Using the notation introduced above, we can rewrite the fast relation of (2.6) in the form 

,i (r) = [n~j Cto) �9 (r) • (r)l 
(~,~q~ (r) • (r) --- 0, q = 1 . . . . .  M), (2.8) 

where Xq.(r) = Xql(r ) + Xq2(r) is the indicator function of the plastic region inside Vq. 
Following [4], we will determine all of the local plastic strains in all of  the strain regions of the q-th elastoplastic 

component. With allowance for (1.4), we obtain the following from (1.3) for a plastic grain in the volume Vq 

- -q,;~ l = 0 .  ( 2 . 9 )  
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In the completely plastic region (s = 1), Eq. (2.9) should be satisfied for all crystallographic directions due to the 
disappearance of strain anisotropy in the grains at this stage, i.e., 

We find from (2.10) and (2.8) that 

"l,l~ /~ ;<q~ = O. ( 2 . 1 0 )  

E(q) * 
0<l)=mqrl0 ( q = M +  1 . . . . .  N), 

m~ = mq [(1 - ao) (~q + me) .h- o.omq~q] -1, ~q = hq (2~t0) -1. (2.11) 

For single crystals in the partially plastic region (s = 2), we use Eqs. (2.8-2.9) and (I .3-1.4) to determine the integral 
shear 

�9 ( ) , .*-  .(q)/o,~q),(q) (r, I, 2, 3), A(~)  ---~ . . . q  q q ~ j  / .~Lpr  tpr p = 

We then use (1.3) to obtain the corresponding plastic swains 

q(2) = --,q',yifl~tq.~! (q  = M + 1 . . . . .  N ) ,  

~ ( q )  r  ~(q)t(q) 
ijkl ~" Lq tkl +tpr  ~pr " 

(2.12) 

Finally, in the elastic region (s = 3), we f'md from (2.8) that 

;,%~ - o ,  ~?~, = 2~,om~% (q = :4  + i . . . . .  ~ .  (2.13) 

To determine the macroscopic stresses in the composite, we average the local stresses over the volume of the specimen 
V with allowance for the rule on mechanical mixing of the components: 

N N 

(s0) = ~.. cq (s0)q, (o0) = ~ cq (o~)q. (2.14) 
q = l  q=l 

We find the quantifies (~ij)q by averaging (2.8) over the volume Vq with allowance for Eqs. (2.1 I)-(2.13): 

v q ~ = V q 2 - O  ( q = l  . . . . .  M). 
(2.15) 

Here, (t~ij)q I and (~ij)~ are the increments of the mean plastic strains in the completely and partially plastic regions of the q-th 
component of  the composite. 

It follows from Eqs. (2.11) that the plastic strains in the first strain region are constant, i.e. the equality ~ij(l) (q) m (~ij)ql. 
The quantities gijCz) (c0, determined by Eq. (2.12), depend on the orientation of the grains relative to the macroscopic axes of the 
specimen, and should be averaged over the region fl --- flqz occupied by the orientations of crystallites of  the second type in the 

orientation space of  single crystals of the q-th component: (~ij)qZ = (gijfz))n- 
With allowance for the above, we find from (2.15) that 

(sq),t = 25 tom~ ([1 - (l - %) m~vqt ] ~]q - 

(1 Cto) * tJ(,z)" - - m~vq2 1 o~,~lk,} (q = 1 . . . . .  N), 

where ~qjdq) = (~ijdq%. 
Inserting the expressions found for (~ij)q into Eqs. (2.14), we determine the deviators of the macroscopic stresses in the 

medium: 
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Here 

(So) = 2go 1[1 - (1 - Cto) B (v~)l liik, - (l - ao) OO*' (v2)} ~h,. 

vl = (v(M+,~ . . . . .  @,); v2 = (v~t+l~2 . . . . .  v~2); 
N 

(v l )  = Y, o . .  cqvqlmqmq, Ion' = i (5~k5~, + ~a5j~); 
qffiM+l 

N 
C~ijk' (V2) = 2 . . . .  0--*lI/(q)" ~qVq21rLq~tqTijkl, 

q=M+l 

(2.16) 

where ~tij is the Kronecker tensor. 

In Eqs. (2.16), the right sides were transformed with allowance for relations used in the self-consistent averaging scheme 

in [10] 

N N 
2 c q m  ~  ! ,  2 c q k ~  = 1, 
q=l q=l 

which is used to determine the macroscopic elastic constants go and K o introduced by Eqs. (2.4). 
Inserting ilia from (2.7) into Eqs. (2.16) and solving the latter for (gij), we obtain the macroscopic rheological equation 

of the elastoplastic composite being examined: 

mqkl "~" ['t0 {[1 + ctoB (vl)] I0,,., + ~.Or (V2)} -1  X 

x {[I - (1 - ao)B (vl)] L,,,,,,- (1 - ao)O.,,,k, (v,)} 
(2.17) 

(Mijkt is the tensor of  the macroscopic shear moduli of the medium). 
We obtain the following relation for the volumetric component of the macroscopic stresses 

%,) = 3 r o  (~,,).  ( 2 .18 )  

The macroscopic plastic strains in the material are determined from (2.11) with allowance for (2.4), (2.7), and (2.15) 

N 
0 

~ij = E r (Oql @ii)qt + vq2 @ij)q2). ( 2 . 1 9 )  
q=l  

Equations (2.17)-(2.19) completely describe the elastoplastic state of the medium in the region of  regular strain-hardening 

( v  I - v 2 - v 3 ~ 0). In the elastic region, there are no plastic grains in the components (vl = v2 = 0) and Eq. (2.17) coincides 
with the macroscopic Hooke 's  law for a stochastic mixture (-~ij) = 2/'lO(~ij)" If  the nlaterial contains only one plastic component 
(N - M = 1) or if all (N - M) of the components are plastic, the initial shear stresses ro (q) (q = M + 1 . . . . .  N) will be similar 

and we can assume that Vql = 0, Vq2 = ~v~*, Vq3 - 1, where ~ ,~ 1, vq2* - 1, Then the following is valid to within terms 

of the order 

Mijkl = I.tO [lijk~ -- ~3dPqm,, (V2)]. 

At the end of the section corresponding to regular strain-hardening of the component with the highest value of Zo (q), most 
of the crystallites in the plastically deformed components will be fully plastic. However, due to the plastic anisotropy of the 

materials (which is related to the discrete spatial arrangement of the different slip systems), there are always some grains that 

remain elastic even under fairly high external stresses. Nevertheless, when the number of  slip systems is large (fee and bee 
crystals) the number of  such grains is negligible and we can put Vq~ = 1, v ~  = ~vqz*, vqz* - 1, vq3 = 0 (q = M + 1 . . . . .  

N). In this case, the following representation is valid (to within terms of the order ~) for the tensor Mij~a 
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I - (1 - ~ 0 )  B (vl.) liJ k; - -  M0,t = ~t0 I + ~0B (v~) 20,, (___~22 1 

Upon attainment of a state of complete plasticity, the assumptions Vql = 1, Vq2 = 0, Vq3 = 0 (q = M + 1 . . . . .  N) 
are valid in all of  the plastic components. The validity of these assumptions reduces Eq. (2.17) to the form 

~l. ~ ~10 

(.~,j) = 2~,. (b,j), 
[ ~(,) ] ~ o .  

1 - I + a o B ( I ) J '  13(I) =q=,,t+iCqm'trn't" 

It follows from the above relation that linear strain-hardening with the shear modulus #.  occurs at the stage of complete 
plasticity in all of  the plastically deformable components of the material. This modulus decreases with an increase in the 
concentration of plastic components in the mixture. 

3. Let us examine the use of the proposed method by employing the example of the tension of a composite by the (alt). 
We have the following for the deviators of the mean stresses and strains in the composite and the components 

2 1 
[ s t t l = ~ [ 6 , ] ,  [ s 2 2 ] = [ s 3 3 ] = - ~ [ 6 , 1 1 ,  [ s o ] = 0  ( t # D ,  

[ b ~ t ] =  (1 + v )  [/~ul, [e22]= [b331= - ~  [J~u], [ /~q]=  0 ( l ~ / ) ,  

where [ ]  = ( ) ,  ( )q; . = "o, Uq- 
With allowance for (3.1), we fmd from (2.7) that 

~ltt = -~ (1 - C~o) (1 + Vo) (L't:) + =._.q.o (6:x) = (1 - C~o) ~T,t + (~ 
3~o 3Pro ' 

I . 

(3.1) 

(3.2) 

Taking into account that q#nii (q) = 0 by virtue of the definition of the tensor q/iFa (q), we obtain the following relation 
from (2.15) and (3.1)-(3.2) 

(,5t~)q = 31.tom ~ {I - (I - Cto) m; [vet + vq2,.pq ]} ~lu 

(3.3) 

The strain-hardening parameters of the components of the composite 0q = hq(2#o) -1, entering into rrq*, should be 

determined from empirical tension curves obtained for each component. Assuming that ~ = #q, Vq2 = 0 (q = M + I . . . . .  N), 
we find from Eq. (3.3) that the below is valid for a specimen of the q-th material at the completely plastic stage 

Here, aq = (o'11) q, E q =  (Ell)q , ~q = ~ll(q) are components of the corresponding tensors in the q-th specimen; 0q '  = hq(2#q)-l; 
Hq -- 2tZq(1 + pq) is the elastic modulus of the material component. 

In accordance with [4], for 0q we find 

Oq = mqe~', O~ = % (1 - %) = zq 

(~o~ = n~ .> / ;  *, ~ = IY~..n~'*), 
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Fig. 1 Fig. 2 

where Hq, is the shear modulus on the experimental curve of the specimen beyond the transitional section; Hq,, is the 

corresponding plastic modulus. 

Equation (3.3) makes it possible to calculate the elastoplastic tension curve of a composite by the following scheme. 

First we use assigned values of  #q, Kq, and Cq (q = 1 . . . . .  N) to calculate the macroscopic elastic constants of the medium from 

the equations of  the self-consistent averaging scheme. We also calculate the strain-hardening parameters of the plastic components 

tgq (q = M + 1 . . . . .  N) from the corresponding experimental curves. Then for each increment of  the parameter ~H we 

determine the volume concentration of plastic grains Vql and Vq2 and the values of the parameters r (q = M + 1 . . . . .  N). 

Equations (3.3) are used to calculate the corresponding increments of the stresses (all) q in the components. The increment of 
the macroscopic stress (au) is found from the mixture rule (2.14), while the quantities (Etl) and ~ l  are obtained from Eq. 

(3.2). 
The macroscopic tension equation of the composite is determined in the following form from (2.16) with allowance for 

(3.2) and the condition ~Hjj = 0 

(611) = H.  (E11), H. = Ho ~ - (1 - ,~o) [B (vl) + ,  (v~)] 
I + ~o [B (vl) + ~ (v2)] ( 3 . 4 )  

Here, H o = 2/~o(1 + ~o) is the elastic modulus of the medium; p(v~ = (3/2)@ml(v2). 

We f'md that P(v2) = 0, H.  = H o {1 - B(1) [1 + aoB(1)] -1} atthe completely plastic stage, and inEq.  (3.4) we can 

change over from increments to the corresponding final values. 
We calculated stress-strain curves for a two-component component made by impregnating a framework of sintered 

powdered tungsten with molten copper (Fig. 1). In accordance with the data in [3, 6, 11], the experimental tension curves of 

the elements of  the composite conform to curves I [tungsten (q = 1)] and II [copper (q = 2)], which in turn correspond to the 

following values for the material constants: 

H 1 = 413 GPa, rtt = 159 CPa, Ool = 0,36 GPa, ~ = 0,0069, 
H2 = 123 GPa, l.t2 = 18,1 GPa, 002 = 0,038 GPa,. 0"{ = 0,038. 

In keeping with (1), we also took ro (q) = aoq/2 (q = 1, 2), where Ooq is the elastic limit of  the q-th component in 

tension. 

Curves 1-5 in Fig. 1 show the stress-strain relations for the composite with different volume contents of  tungsten (c z = 

0.666; 0.582; 0.512; 0.464; 0.412). The solid lines show the results calculated by the proposed scheme, while the dashed lines 
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show the experimental data [3]. In calculating the parameters Vq~, Vq2, ~q (q = 1, 2), we chose 91 as the number of independent 
orientations of the grains within the f'wst crystallographic triangle. 

Given the generally good agreement between the experimental and theoretical curves, the fact that (as can be seen in 
Fig. 2) the theoretical stresses are lower than the experimental stresses for c 1 > 0.5 and higher for c I < 0.5 is probably due 
to understated values of go1 and 01' for tungsten and overstated values of a02 and 02' for copper in [6, 11] relative to the values 
of the same elements in the composite examined in [3]. These components have different characteristics in the composite. 

Figure 2 shows the dependence of the dimensionless plastic modulus of linear strain-hardening M. = it.it 0- ~ on the 
volume concentration of tungsten in the cases when one or both (curves 1 and 2) of the components are completely plastic. 

Let us analyze the results. It follows from (3.3) that the macroscopic elastic limit of the composite is determined by the 
elastic limit of copper in the mixture (tru) o = tro2/m2 ~ This quantity has the following values for curves 1-5 in Fig. 1: 5.93; 
5.52; 5.18; 4.97; 4.79 GPa.102. Copper is only partially plastic and tungsten is elastically deformed in the stage of intensive 

strain-hardening which follows the elastic stage (E = 0.0543.25%). Here, for a composite of constant composition, the plastic 
modulus decreases linearly with an increase in concentration v22, while with different volume contents of the components the 
modulus also decreases linearly as copper concentration c 2 increases. On the section E = 0.2543.5% (see Fig. I) (copper 
completely plastic and tungsten elastic), H, is proportional to the concentration of the elastic phase (curve 1 in Fig. 2). The stage 
of deformation of the composite corresponding to the beginning of plastic strain of tungsten (E = 0.5-1.25%) is characterized 
by a smooth decrease in the plastic modulus to a value corresponding to linear strain-hardening of the material, with both 
components being completely plastic (curve 2 in Fig. 2). At the theoretical concentrations of tungsten for curves 1-5 in Fig. 1, 
the plastic modulus is weakly dependent on e I and is close to the H, of tungsten. 

It should be noted that since the macroscopic rheological equation of the composite in the given model was obtained 
using a self-consistent averaging scheme, it can be employed within a fairly wide range of volume concentrations of the 
components and their elastic moduli -- including cases in which pores and rigid phases are present [10]. The hypothesis [8] on 
the equality of the plastic shears in the active slip systems of a plastic grain is valid only for materials in which the number of 
independent slip systems in the crystals n = 5 (i.e., fcc and bcc crystals) [4]. The model presented here is valid within this 
region as well. 
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